/** * @file ALGO_Kalman_ATY.c * * @param Project ALGO_Algorithm_ATY_LIB * * @author ATY * * @copyright * - Copyright 2017 - 2023 MZ-ATY * - This code follows: * - MZ-ATY Various Contents Joint Statement - * * https://mengze.top/MZ-ATY_VCJS * - CC 4.0 BY-NC-SA - * * https://creativecommons.org/licenses/by-nc-sa/4.0/ * - Your use will be deemed to have accepted the terms of this statement. * * @brief Familiar functions of Kalman * * @version * - 1_01_220605 > ATY * -# Preliminary version, first Release * - 1_02_230108 > ATY * -# Finish and test 2D * @see https://www.kalmanfilter.net/ * @see https://github.com/xiahouzuoxin/kalman_filter * @see https://blog.csdn.net/whereismatrix/article/details/79920748 ******************************************************************************** */ #ifndef __ALGO_Kalman_ATY_C #define __ALGO_Kalman_ATY_C #include "ALGO_Kalman_ATY.h" /******************************* For user *************************************/ /******************************************************************************/ #if !Kalman1D_TYPE // use below instead /** * @brief Kalman filter one-dimensional with A = H = 1 * @param kfp kalman struct init value * @param input filter data(series) * @return data after filter * @note Origin equations * - State Equation * x(k) = A * x(k-1) + B * u(k) + w(k-1) * (if no controlled quantity then: B * u(k)=0, like detect Tem/Hum) * - Observations Equation * z(k) = H * x(k) + y(k) * - Prediction Equations * x(k|k-1) = A * x(k-1|k-1) + B * u(k) * P(k|k-1) = A * P(k-1|k-1) * A^T + Q * - Correction Equations * K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1) * x(k|k) = x(k|k-1) + K(k) * (z(k) - H * x(k|k-1)) * P(k|k) = (I - K(k) * H) * P(k|k-1) * @note Equations Note: * x and P only need to be assigned initial values, each iteration will produce new values; K does not need to be assigned an initial value * Q and R assignments can also be changed in subsequent iterations * The initial values of x and P can be arbitrarily set, and the powerful Kalman filter will immediately erase the irrdibility * But notice that the initial value of P cannot be 0, otherwise the filter will think that there is no error * The larger R is, the smoother the curve is, but the filter becomes insensitive and lags exist * (The value of Q and R can also be time-varying, can recognize jump changes, can be adaptive) * Q: process noise, Q increases, dynamic response becomes faster, convergence stability becomes worse * R: measurement noise, R increases, the dynamic response becomes slower, and the convergence stability becomes better */ float ALGO_KalmanFilter1D(ALGO_Kalman1D_S* kfp, float input) { // Prediction covariance: // estimated system covariance at time k // = system covariance at time k-1 + process noise covariance kfp->P = kfp->L_P + kfp->Q; // Kalman gain: // Kalman gain // = system estimated covariance at time k kfp->G = kfp->P / (kfp->P + kfp->R); // Update the optimal value: // Optimal value of state variable at time k // = predicted value of state variable + Kalman gain // * (Measured value - predicted value of state variable) // / (system estimated covariance at time k + observation noise covariance) kfp->O = kfp->O + kfp->G * (input - kfp->O); // Update the covariance: // this time the system covariance is paid to kfp->LastP for the next operation kfp->L_P = (1 - kfp->G) * kfp->P; return kfp->O; } #else /** * @brief Kalman filter one-dimensional * @param kfp kalman struct init value * @param input filter data(series) * @return data after filter * @note Origin equations * - State Equation * x(k) = A * x(k-1) + B * u(k) + w(k-1) * (if no controlled quantity then: B * u(k)=0, like detect Tem/Hum) * - Observations Equation * z(k) = H * x(k) + y(k) * - Prediction Equations * x(k|k-1) = A * x(k-1|k-1) + B * u(k) * P(k|k-1) = A * P(k-1|k-1) * A^T + Q * - Correction Equations * K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1) * x(k|k) = x(k|k-1) + K(k) * (z(k) - H * x(k|k-1)) * P(k|k) = (I - K(k) * H) * P(k|k-1) * @note Equations Note: * x and P only need to be assigned initial values, each iteration will produce new values; K does not need to be assigned an initial value * Q and R assignments can also be changed in subsequent iterations * The initial values of x and P can be arbitrarily set, and the powerful Kalman filter will immediately erase the irrdibility * But notice that the initial value of P cannot be 0, otherwise the filter will think that there is no error * The larger R is, the smoother the curve is, but the filter becomes insensitive and lags exist * (The value of Q and R can also be time-varying, can recognize jump changes, can be adaptive) * Q: process noise, Q increases, dynamic response becomes faster, convergence stability becomes worse * R: measurement noise, R increases, the dynamic response becomes slower, and the convergence stability becomes better * @note A = H = 1 in always use */ float ALGO_KalmanFilter1D(ALGO_Kalman1D_S* kfp, float input) { // Prediction covariance: // estimated system covariance at time k // = system covariance at time k-1 + process noise covariance kfp->X = kfp->A * kfp->X; kfp->P = kfp->A * kfp->A * kfp->P + kfp->Q; // Kalman gain: // Kalman gain // = system estimated covariance at time k kfp->G = kfp->P * kfp->H / (kfp->P * kfp->H * kfp->H + kfp->R); // Update the optimal value: // Optimal value of state variable at time k // = predicted value of state variable + Kalman gain // * (Measured value - predicted value of state variable) // / (system estimated covariance at time k + observation noise covariance) kfp->X = kfp->X + kfp->G * (input - kfp->H * kfp->X); // Update the covariance: // this time the system covariance is paid to kfp->LastP for the next operation kfp->P = (1 - kfp->G * kfp->H) * kfp->P; return kfp->X; } #endif /* 01 */ #ifdef Kalman_2D /** * @brief Kalman filter two-dimensional * @param kfp kalman struct init value * @param input filter data(series) * @return data after filter * @note allways in default: * A = {{1, 0.1}, {0, 1}}; * H = {1, 0}; */ float ALGO_KalmanFilter2D(ALGO_Kalman2D_S* kfp, float input) { float temp[3] = {0.0f}; /* Step1: Predict */ kfp->X[0] = kfp->A[0][0] * kfp->X[0] + kfp->A[0][1] * kfp->X[1]; kfp->X[1] = kfp->A[1][0] * kfp->X[0] + kfp->A[1][1] * kfp->X[1]; /* P(n|n-1)=A^2*P(n-1|n-1)+Q */ kfp->P[0][0] = kfp->A[0][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0] + kfp->Q[0][0]; kfp->P[0][1] = kfp->A[0][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1] + kfp->Q[0][1]; kfp->P[1][0] = kfp->A[1][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0] + kfp->Q[1][0]; // kfp->P[0][1] = kfp->A[0][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1]; // kfp->P[1][0] = kfp->A[1][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0]; kfp->P[1][1] = kfp->A[1][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1] + kfp->Q[1][1]; /* Step2: Measurement */ /* G = P * H^T * [R + H * P * H^T]^(-1), H^T means transpose. */ temp[0] = kfp->P[0][0] * kfp->H[0] + kfp->P[0][1] * kfp->H[1]; temp[1] = kfp->P[1][0] * kfp->H[0] + kfp->P[1][1] * kfp->H[1]; temp[2] = kfp->R + kfp->H[0] * temp[0] + kfp->H[1] * temp[1]; kfp->G[0] = temp[0] / temp[2]; kfp->G[1] = temp[1] / temp[2]; /* x(n|n) = x(n|n-1) + G(n) * [input - H(n)*x(n|n-1)]*/ temp[2] = kfp->H[0] * kfp->X[0] + kfp->H[1] * kfp->X[1]; kfp->X[0] = kfp->X[0] + kfp->G[0] * (input - temp[2]); kfp->X[1] = kfp->X[1] + kfp->G[1] * (input - temp[2]); /* Update @P: P(n|n) = [I - G * H] * P(n|n-1) */ kfp->P[0][0] = (1 - kfp->G[0] * kfp->H[0]) * kfp->P[0][0]; kfp->P[0][1] = (1 - kfp->G[0] * kfp->H[1]) * kfp->P[0][1]; kfp->P[1][0] = (1 - kfp->G[1] * kfp->H[0]) * kfp->P[1][0]; kfp->P[1][1] = (1 - kfp->G[1] * kfp->H[1]) * kfp->P[1][1]; return kfp->X[0]; } #endif /* Kalman_2D */ #ifdef __DEBUG_ALGO_Kalman_ATY #if !Kalman1D_TYPE ALGO_Kalman1D_S ALGO_kfp1D = {1, 0, 0, 0, 1e-9, 1e-6}; #else ALGO_Kalman1D_S ALGO_kfp1D = {0, 0, 1, 1, 1, 1e-9, 1e-6}; #endif /* 01 */ ALGO_Kalman2D_S ALGO_kfp2D = { {0, 0}, {0, 0}, {{1, 0.1}, {0, 1}}, {1, 0}, {{1, 0}, {0, 1}}, {{1e-9, 0}, {0, 1e-9}}, 10e-6 }; uint16_t tempSaveOW = 0; float tempSaveO = 0; float tempSaveK = 0; float tempSaveK2 = 0; void ALGO_Kalman_Test(void) { uint16_t i = 0; uint8_t testNum = 3; if(testNum == 1) { ALGO_kfp1D.Q = 1e-6; ALGO_kfp1D.R = 1e-4; for(i = 0; i < 120; i++) { tempSaveO = testSignalSigned[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalSigned[i]); tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalSigned[i]); // printf("$"); // printf("%f ", testSignalSigned[i]); // printf("%f", ALGO_KalmanFilter1D(&ALGO_kfp, testSignalSigned[i])); // printf(";"); } } else if(testNum == 2) { ALGO_kfp1D.Q = 1e-6; ALGO_kfp1D.R = 1e-4; for(i = 0; i < 120; i++) { tempSaveO = testSignalUnsigned[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUnsigned[i]); tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalUnsigned[i]); // printf("$"); // printf("%f ", testSignalUnsigned[i]); // printf("%f", ALGO_KalmanFilter1D(&ALGO_kfp, testSignalUnsigned[i])); // printf(";"); } } else if(testNum == 3) { ALGO_kfp1D.Q = 1e-9; ALGO_kfp1D.R = 1e-6; for(i = 0; i < 3000; i++) { tempSaveO = (float)testSignalUint16[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUint16[i]); tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalUint16[i]); // printf("$"); // printf("%d ", testSignalUint16[i]); // printf("%d", (uint16_t)ALGO_KalmanFilter1D(&ALGO_kfp, (float)testSignalUint16[i])); // printf(";"); } } else if(testNum == 4) { ALGO_kfp1D.Q = 1e-9; ALGO_kfp1D.R = 1e-6; // ALGO_kfp2D.X[0] = testSignalFloat[0]; // ALGO_kfp2D.X[1] = testSignalFloat[1] - testSignalFloat[0]; for(i = 0; i < 620; i++) { tempSaveO = testSignalFloat[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalFloat[i]); tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalFloat[i]); // printf("$"); // printf("%d ", testSignalUint16[i]); // printf("%d", (uint16_t)ALGO_KalmanFilter1D(&ALGO_kfp, (float)testSignalUint16[i])); // printf(";"); } } } #endif /* __DEBUG_ALGO_Kalman_ATY */ #endif /* __ALGO_Kalman_ATY_C */ /******************************** End Of File *********************************/