/** * @file ALGO_Kalman_ATY.c * * @param Project ALGO_Algorithm_ATY_LIB * * @author ATY * * @copyright * - Copyright 2017 - 2026 MZ-ATY * - This code follows: * - MZ-ATY Various Contents Joint Statement - * * https://mengze.top/MZ-ATY_VCJS * - CC 4.0 BY-NC-SA - * * https://creativecommons.org/licenses/by-nc-sa/4.0/ * - Your use will be deemed to have accepted the terms of this statement. * * @brief functions of Kalman * * @version * - 1_01_220605 > ATY * -# Preliminary version, first Release * - 1_02_230108 > ATY * -# Finish and test 2D * @see https://www.kalmanfilter.net/ * @see https://github.com/xiahouzuoxin/kalman_filter * @see https://blog.csdn.net/whereismatrix/article/details/79920748 ******************************************************************************** */ #ifndef __ALGO_Kalman_ATY_C #define __ALGO_Kalman_ATY_C #include "ALGO_Kalman_ATY.h" /******************************* For user *************************************/ /******************************************************************************/ #if !Kalman1D_TYPE // use below instead /** * @brief Kalman filter one-dimensional with A = H = 1 * @param kfp kalman struct init value * @param input filter data(series) * @return data after filter * @note Origin equations * - State Equation * x(k) = A * x(k-1) + B * u(k) + w(k-1) * (if no controlled quantity then: B * u(k)=0, like detect Tem/Hum) * - Observations Equation * z(k) = H * x(k) + y(k) * - Prediction Equations * x(k|k-1) = A * x(k-1|k-1) + B * u(k) * P(k|k-1) = A * P(k-1|k-1) * A^T + Q * - Correction Equations * K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1) * x(k|k) = x(k|k-1) + K(k) * (z(k) - H * x(k|k-1)) * P(k|k) = (I - K(k) * H) * P(k|k-1) * @note Equations Note: * x and P only need to be assigned initial values, each iteration will produce new values; K does not need to be assigned an initial value * Q and R assignments can also be changed in subsequent iterations * The initial values of x and P can be arbitrarily set, and the powerful Kalman filter will immediately erase the irrdibility * But notice that the initial value of P cannot be 0, otherwise the filter will think that there is no error * The larger R is, the smoother the curve is, but the filter becomes insensitive and lags exist * (The value of Q and R can also be time-varying, can recognize jump changes, can be adaptive) * Q: process noise, Q increases, dynamic response becomes faster, convergence stability becomes worse * R: measurement noise, R increases, the dynamic response becomes slower, and the convergence stability becomes better */ float ALGO_KalmanFilter1D(ALGO_Kalman1D_S* kfp, float input){ // Prediction covariance: // estimated system covariance at time k // = system covariance at time k-1 + process noise covariance kfp->P = kfp->L_P + kfp->Q; // Kalman gain: // Kalman gain // = system estimated covariance at time k kfp->G = kfp->P / (kfp->P + kfp->R); // Update the optimal value: // Optimal value of state variable at time k // = predicted value of state variable + Kalman gain // * (Measured value - predicted value of state variable) // / (system estimated covariance at time k + observation noise covariance) kfp->O = kfp->O + kfp->G * (input - kfp->O); // Update the covariance: // this time the system covariance is paid to kfp->LastP for the next operation kfp->L_P = (1 - kfp->G) * kfp->P; return kfp->O; } #else /** * @brief Kalman filter one-dimensional * @param kfp kalman struct init value * @param input filter data(series) * @return data after filter * @note Origin equations * - State Equation * x(k) = A * x(k-1) + B * u(k) + w(k-1) * (if no controlled quantity then: B * u(k)=0, like detect Tem/Hum) * - Observations Equation * z(k) = H * x(k) + y(k) * - Prediction Equations * x(k|k-1) = A * x(k-1|k-1) + B * u(k) * P(k|k-1) = A * P(k-1|k-1) * A^T + Q * - Correction Equations * K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1) * x(k|k) = x(k|k-1) + K(k) * (z(k) - H * x(k|k-1)) * P(k|k) = (I - K(k) * H) * P(k|k-1) * @note Equations Note: * x and P only need to be assigned initial values, each iteration will produce new values; K does not need to be assigned an initial value * Q and R assignments can also be changed in subsequent iterations * The initial values of x and P can be arbitrarily set, and the powerful Kalman filter will immediately erase the irrdibility * But notice that the initial value of P cannot be 0, otherwise the filter will think that there is no error * The larger R is, the smoother the curve is, but the filter becomes insensitive and lags exist * (The value of Q and R can also be time-varying, can recognize jump changes, can be adaptive) * Q: process noise, Q increases, dynamic response becomes faster, convergence stability becomes worse * R: measurement noise, R increases, the dynamic response becomes slower, and the convergence stability becomes better * @note A = H = 1 in always use */ float ALGO_KalmanFilter1D(ALGO_Kalman1D_S* kfp, float input){ // Prediction covariance: // estimated system covariance at time k // = system covariance at time k-1 + process noise covariance kfp->X = kfp->A * kfp->X; kfp->P = kfp->A * kfp->A * kfp->P + kfp->Q; // Kalman gain: // Kalman gain // = system estimated covariance at time k kfp->G = kfp->P * kfp->H / (kfp->P * kfp->H * kfp->H + kfp->R); // Update the optimal value: // Optimal value of state variable at time k // = predicted value of state variable + Kalman gain // * (Measured value - predicted value of state variable) // / (system estimated covariance at time k + observation noise covariance) kfp->X = kfp->X + kfp->G * (input - kfp->H * kfp->X); // Update the covariance: // this time the system covariance is paid to kfp->LastP for the next operation kfp->P = (1 - kfp->G * kfp->H) * kfp->P; return kfp->X; } #endif /* 01 */ #ifdef Kalman_2D /** * @brief Kalman filter two-dimensional * @param kfp kalman struct init value * @param input filter data(series) * @return data after filter * @note allways in default: * A = {{1, 0.1}, {0, 1}}; * H = {1, 0}; */ float ALGO_KalmanFilter2D(ALGO_Kalman2D_S* kfp, float input){ float temp[3] = {0.0}; /* Step1: Predict */ kfp->X[0] = kfp->A[0][0] * kfp->X[0] + kfp->A[0][1] * kfp->X[1]; kfp->X[1] = kfp->A[1][0] * kfp->X[0] + kfp->A[1][1] * kfp->X[1]; /* P(n|n-1)=A^2*P(n-1|n-1)+Q */ kfp->P[0][0] = kfp->A[0][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0] + kfp->Q[0][0]; kfp->P[0][1] = kfp->A[0][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1] + kfp->Q[0][1]; kfp->P[1][0] = kfp->A[1][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0] + kfp->Q[1][0]; // kfp->P[0][1] = kfp->A[0][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1]; // kfp->P[1][0] = kfp->A[1][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0]; kfp->P[1][1] = kfp->A[1][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1] + kfp->Q[1][1]; /* Step2: Measurement */ /* G = P * H^T * [R + H * P * H^T]^(-1), H^T means transpose. */ temp[0] = kfp->P[0][0] * kfp->H[0] + kfp->P[0][1] * kfp->H[1]; temp[1] = kfp->P[1][0] * kfp->H[0] + kfp->P[1][1] * kfp->H[1]; temp[2] = kfp->R + kfp->H[0] * temp[0] + kfp->H[1] * temp[1]; kfp->G[0] = temp[0] / temp[2]; kfp->G[1] = temp[1] / temp[2]; /* x(n|n) = x(n|n-1) + G(n) * [input - H(n)*x(n|n-1)]*/ temp[2] = kfp->H[0] * kfp->X[0] + kfp->H[1] * kfp->X[1]; kfp->X[0] = kfp->X[0] + kfp->G[0] * (input - temp[2]); kfp->X[1] = kfp->X[1] + kfp->G[1] * (input - temp[2]); /* Update @P: P(n|n) = [I - G * H] * P(n|n-1) */ kfp->P[0][0] = (1 - kfp->G[0] * kfp->H[0]) * kfp->P[0][0]; kfp->P[0][1] = (1 - kfp->G[0] * kfp->H[1]) * kfp->P[0][1]; kfp->P[1][0] = (1 - kfp->G[1] * kfp->H[0]) * kfp->P[1][0]; kfp->P[1][1] = (1 - kfp->G[1] * kfp->H[1]) * kfp->P[1][1]; return kfp->X[0]; } #endif /* Kalman_2D */ #ifdef ALGO_Kalman_ATY_Test_ATY #if !Kalman1D_TYPE ALGO_Kalman1D_S ALGO_kfp1D = {1, 0, 0, 0, 1e-9, 1e-6}; #else ALGO_Kalman1D_S ALGO_kfp1D = {0, 0, 1, 1, 1, 1e-9, 1e-6}; #endif /* Kalman1D_TYPE */ #ifdef Kalman_2D ALGO_Kalman2D_S ALGO_kfp2D = { {0, 0}, {0, 0}, {{1, 0.1}, {0, 1}}, {1, 0}, {{1, 0}, {0, 1}}, {{1e-9, 0}, {0, 1e-9}}, 10e-6 }; #endif /* Kalman_2D */ uint16_t tempSaveOW = 0; float tempSaveO = 0; float tempSaveK = 0; float tempSaveK2 = 0; void ALGO_Kalman_Test(void){ uint16_t i = 0; uint8_t testNum = 1; if(testNum == 1){ ALGO_kfp1D.Q = 1e-6; ALGO_kfp1D.R = 1e-4; for(i = 0; i < 120; i++){ tempSaveO = testSignalSigned[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalSigned[i]); #ifdef Kalman_2D tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalSigned[i]); #endif /* Kalman_2D */ printf_ATY_D("$"); printf_ATY_D("%f ", testSignalSigned[i]); printf_ATY_D("%f", ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalSigned[i])); printf_ATY_D(";"); } } else if(testNum == 2){ ALGO_kfp1D.Q = 1e-6; ALGO_kfp1D.R = 1e-4; for(i = 0; i < 120; i++){ tempSaveO = testSignalUnsigned[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUnsigned[i]); #ifdef Kalman_2D tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalUnsigned[i]); #endif /* Kalman_2D */ printf_ATY_D("$"); printf_ATY_D("%f ", testSignalUnsigned[i]); printf_ATY_D("%f", ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUnsigned[i])); printf_ATY_D(";"); } } else if(testNum == 3){ ALGO_kfp1D.Q = 1e-9; ALGO_kfp1D.R = 1e-6; for(i = 0; i < 3000; i++){ tempSaveO = (float)testSignalUint16[i]; tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUint16[i]); #ifdef Kalman_2D tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalUint16[i]); #endif /* Kalman_2D */ printf_ATY_D("$"); printf_ATY_D("%d ", testSignalUint16[i]); printf_ATY_D("%d", (uint16_t)ALGO_KalmanFilter1D(&ALGO_kfp1D, (float)testSignalUint16[i])); printf_ATY_D(";"); } } } // debug output data format: $y1a y1b;$y2a y2b;...------------------------------ // $0.732202 0.732166;$1.107485 0.923521;$0.832648 0.891278;$0.997930 0.921472; // $0.743661 0.878040;$0.928340 0.889176;$0.546396 0.818120;$0.510484 0.757106; // $0.114057 0.633303;$0.181101 0.547962;$-0.103150 0.426716;$-0.561716 0.244303; // $-0.307147 0.143145;$-0.921523 -0.051368;$-0.626582 -0.156174;$-0.817900 -0.276524; // $-0.899243 -0.389642;$-1.011869 -0.502578;$-0.948660 -0.583498;$-1.024685 -0.663502; // $-1.078591 -0.738754;$-0.854667 -0.759765;$-0.905492 -0.786177;$-0.548572 -0.743116; // $-0.737286 -0.742059;$-0.450227 -0.689175;$-1.032790 -0.751442;$-0.293712 -0.668498; // $-0.159926 -0.576342;$-0.117551 -0.493208;$0.363302 -0.338006;$0.637550 -0.161233; // $0.284187 -0.080522;$0.737519 0.067708;$0.521005 0.149846;$0.893311 0.284563; // $1.054081 0.424001;$0.525526 0.442397;$0.782144 0.503960;$1.009261 0.595521; // $0.967746 0.662969;$1.229197 0.765570;$1.179795 0.840628;$0.998553 0.869244; // $0.806697 0.857911;$0.615047 0.813903;$0.003506 0.667058;$0.023320 0.550412; // $0.510523 0.543184;$0.020320 0.448441;$-0.168222 0.336701;$-0.358753 0.210684; // $-0.424160 0.095649;$-0.492052 -0.010843;$-0.425293 -0.085942;$-0.460660 -0.153841; // $-0.712114 -0.255001;$-1.311701 -0.446476;$-0.815038 -0.513260;$-0.827395 -0.570182; // $-0.946493 -0.638370;$-0.962119 -0.697033;$-0.849309 -0.724626;$-0.733573 -0.726247; // $-0.680960 -0.718041;$-0.742870 -0.722540;$-0.529109 -0.687490;$-0.567446 -0.665738; // $-0.136456 -0.569832;$-0.199753 -0.502773;$0.169624 -0.380934;$0.231133 -0.270027; // $0.686898 -0.096631;$0.284297 -0.027606;$0.491547 0.066465;$0.766148 0.193248; // $0.808002 0.304642;$1.106872 0.450007;$1.134952 0.574120;$0.806723 0.616268; // $1.119804 0.707509;$0.931759 0.748143;$1.326805 0.852998;$0.890237 0.859745; // $0.653111 0.822303;$0.973650 0.849727;$0.903934 0.859550;$0.350950 0.767391; // $0.088230 0.644326;$0.208081 0.565278;$-0.084471 0.447543;$-0.272629 0.317047; // $-0.352162 0.195785;$-0.748851 0.024616;$-0.887943 -0.140741;$-0.736057 -0.248613; // $-0.939653 -0.373830;$-1.119212 -0.508894;$-0.944213 -0.587774;$-0.761944 -0.619334; // $-0.988381 -0.686206;$-0.681791 -0.685406;$-0.900586 -0.724397;$-1.064615 -0.786045; // $-0.843333 -0.796425;$-0.718142 -0.782240;$-0.138929 -0.665672;$-0.583088 -0.650707; // $-0.460869 -0.616308;$-0.050059 -0.513703;$0.101613 -0.402207;$0.150226 -0.302106; // $0.593740 -0.139777;$0.454790 -0.032041;$0.612092 0.084677;$0.829426 0.219626; // $0.899205 0.342766;$1.024959 0.466381;$1.159378 0.591953;$0.977459 0.661807; // // //