| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290 |
- /**
- * @file ALGO_Kalman_ATY.c
- *
- * @param Project ALGO_Algorithm_ATY_LIB
- *
- * @author ATY
- *
- * @copyright
- * - Copyright 2017 - 2023 MZ-ATY
- * - This code follows:
- * - MZ-ATY Various Contents Joint Statement -
- * <a href="https://mengze.top/MZ-ATY_VCJS">
- * https://mengze.top/MZ-ATY_VCJS</a>
- * - CC 4.0 BY-NC-SA -
- * <a href="https://creativecommons.org/licenses/by-nc-sa/4.0/">
- * https://creativecommons.org/licenses/by-nc-sa/4.0/</a>
- * - Your use will be deemed to have accepted the terms of this statement.
- *
- * @brief Familiar functions of Kalman
- *
- * @version
- * - 1_01_220605 > ATY
- * -# Preliminary version, first Release
- * - 1_02_230108 > ATY
- * -# Finish and test 2D
- * @see https://www.kalmanfilter.net/
- * @see https://github.com/xiahouzuoxin/kalman_filter
- * @see https://blog.csdn.net/whereismatrix/article/details/79920748
- ********************************************************************************
- */
- #ifndef __ALGO_Kalman_ATY_C
- #define __ALGO_Kalman_ATY_C
- #include "ALGO_Kalman_ATY.h"
- /******************************* For user *************************************/
- /******************************************************************************/
- #if !Kalman1D_TYPE // use below instead
- /**
- * @brief Kalman filter one-dimensional with A = H = 1
- * @param kfp kalman struct init value
- * @param input filter data(series)
- * @return data after filter
- * @note Origin equations
- * - State Equation
- * x(k) = A * x(k-1) + B * u(k) + w(k-1)
- * (if no controlled quantity then: B * u(k)=0, like detect Tem/Hum)
- * - Observations Equation
- * z(k) = H * x(k) + y(k)
- * - Prediction Equations
- * x(k|k-1) = A * x(k-1|k-1) + B * u(k)
- * P(k|k-1) = A * P(k-1|k-1) * A^T + Q
- * - Correction Equations
- * K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1)
- * x(k|k) = x(k|k-1) + K(k) * (z(k) - H * x(k|k-1))
- * P(k|k) = (I - K(k) * H) * P(k|k-1)
- * @note Equations Note:
- * x and P only need to be assigned initial values, each iteration will produce new values; K does not need to be assigned an initial value
- * Q and R assignments can also be changed in subsequent iterations
- * The initial values of x and P can be arbitrarily set, and the powerful Kalman filter will immediately erase the irrdibility
- * But notice that the initial value of P cannot be 0, otherwise the filter will think that there is no error
- * The larger R is, the smoother the curve is, but the filter becomes insensitive and lags exist
- * (The value of Q and R can also be time-varying, can recognize jump changes, can be adaptive)
- * Q: process noise, Q increases, dynamic response becomes faster, convergence stability becomes worse
- * R: measurement noise, R increases, the dynamic response becomes slower, and the convergence stability becomes better
- */
- float ALGO_KalmanFilter1D(ALGO_Kalman1D_S* kfp, float input)
- {
- // Prediction covariance:
- // estimated system covariance at time k
- // = system covariance at time k-1 + process noise covariance
- kfp->P = kfp->L_P + kfp->Q;
- // Kalman gain:
- // Kalman gain
- // = system estimated covariance at time k
- kfp->G = kfp->P / (kfp->P + kfp->R);
- // Update the optimal value:
- // Optimal value of state variable at time k
- // = predicted value of state variable + Kalman gain
- // * (Measured value - predicted value of state variable)
- // / (system estimated covariance at time k + observation noise covariance)
- kfp->O = kfp->O + kfp->G * (input - kfp->O);
- // Update the covariance:
- // this time the system covariance is paid to kfp->LastP for the next operation
- kfp->L_P = (1 - kfp->G) * kfp->P;
- return kfp->O;
- }
- #else
- /**
- * @brief Kalman filter one-dimensional
- * @param kfp kalman struct init value
- * @param input filter data(series)
- * @return data after filter
- * @note Origin equations
- * - State Equation
- * x(k) = A * x(k-1) + B * u(k) + w(k-1)
- * (if no controlled quantity then: B * u(k)=0, like detect Tem/Hum)
- * - Observations Equation
- * z(k) = H * x(k) + y(k)
- * - Prediction Equations
- * x(k|k-1) = A * x(k-1|k-1) + B * u(k)
- * P(k|k-1) = A * P(k-1|k-1) * A^T + Q
- * - Correction Equations
- * K(k) = P(k|k-1) * H^T * (H * P(k|k-1) * H^T + R)^(-1)
- * x(k|k) = x(k|k-1) + K(k) * (z(k) - H * x(k|k-1))
- * P(k|k) = (I - K(k) * H) * P(k|k-1)
- * @note Equations Note:
- * x and P only need to be assigned initial values, each iteration will produce new values; K does not need to be assigned an initial value
- * Q and R assignments can also be changed in subsequent iterations
- * The initial values of x and P can be arbitrarily set, and the powerful Kalman filter will immediately erase the irrdibility
- * But notice that the initial value of P cannot be 0, otherwise the filter will think that there is no error
- * The larger R is, the smoother the curve is, but the filter becomes insensitive and lags exist
- * (The value of Q and R can also be time-varying, can recognize jump changes, can be adaptive)
- * Q: process noise, Q increases, dynamic response becomes faster, convergence stability becomes worse
- * R: measurement noise, R increases, the dynamic response becomes slower, and the convergence stability becomes better
- * @note A = H = 1 in always use
- */
- float ALGO_KalmanFilter1D(ALGO_Kalman1D_S* kfp, float input)
- {
- // Prediction covariance:
- // estimated system covariance at time k
- // = system covariance at time k-1 + process noise covariance
- kfp->X = kfp->A * kfp->X;
- kfp->P = kfp->A * kfp->A * kfp->P + kfp->Q;
- // Kalman gain:
- // Kalman gain
- // = system estimated covariance at time k
- kfp->G = kfp->P * kfp->H / (kfp->P * kfp->H * kfp->H + kfp->R);
- // Update the optimal value:
- // Optimal value of state variable at time k
- // = predicted value of state variable + Kalman gain
- // * (Measured value - predicted value of state variable)
- // / (system estimated covariance at time k + observation noise covariance)
- kfp->X = kfp->X + kfp->G * (input - kfp->H * kfp->X);
- // Update the covariance:
- // this time the system covariance is paid to kfp->LastP for the next operation
- kfp->P = (1 - kfp->G * kfp->H) * kfp->P;
- return kfp->X;
- }
- #endif /* 01 */
- #ifdef Kalman_2D
- /**
- * @brief Kalman filter two-dimensional
- * @param kfp kalman struct init value
- * @param input filter data(series)
- * @return data after filter
- * @note allways in default:
- * A = {{1, 0.1}, {0, 1}};
- * H = {1, 0};
- */
- float ALGO_KalmanFilter2D(ALGO_Kalman2D_S* kfp, float input)
- {
- float temp[3] = {0.0f};
- /* Step1: Predict */
- kfp->X[0] = kfp->A[0][0] * kfp->X[0] + kfp->A[0][1] * kfp->X[1];
- kfp->X[1] = kfp->A[1][0] * kfp->X[0] + kfp->A[1][1] * kfp->X[1];
- /* P(n|n-1)=A^2*P(n-1|n-1)+Q */
- kfp->P[0][0] = kfp->A[0][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0] + kfp->Q[0][0];
- kfp->P[0][1] = kfp->A[0][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1] + kfp->Q[0][1];
- kfp->P[1][0] = kfp->A[1][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0] + kfp->Q[1][0];
- // kfp->P[0][1] = kfp->A[0][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1];
- // kfp->P[1][0] = kfp->A[1][0] * kfp->P[0][0] + kfp->A[0][1] * kfp->P[1][0];
- kfp->P[1][1] = kfp->A[1][0] * kfp->P[0][1] + kfp->A[1][1] * kfp->P[1][1] + kfp->Q[1][1];
- /* Step2: Measurement */
- /* G = P * H^T * [R + H * P * H^T]^(-1), H^T means transpose. */
- temp[0] = kfp->P[0][0] * kfp->H[0] + kfp->P[0][1] * kfp->H[1];
- temp[1] = kfp->P[1][0] * kfp->H[0] + kfp->P[1][1] * kfp->H[1];
- temp[2] = kfp->R + kfp->H[0] * temp[0] + kfp->H[1] * temp[1];
- kfp->G[0] = temp[0] / temp[2];
- kfp->G[1] = temp[1] / temp[2];
- /* x(n|n) = x(n|n-1) + G(n) * [input - H(n)*x(n|n-1)]*/
- temp[2] = kfp->H[0] * kfp->X[0] + kfp->H[1] * kfp->X[1];
- kfp->X[0] = kfp->X[0] + kfp->G[0] * (input - temp[2]);
- kfp->X[1] = kfp->X[1] + kfp->G[1] * (input - temp[2]);
- /* Update @P: P(n|n) = [I - G * H] * P(n|n-1) */
- kfp->P[0][0] = (1 - kfp->G[0] * kfp->H[0]) * kfp->P[0][0];
- kfp->P[0][1] = (1 - kfp->G[0] * kfp->H[1]) * kfp->P[0][1];
- kfp->P[1][0] = (1 - kfp->G[1] * kfp->H[0]) * kfp->P[1][0];
- kfp->P[1][1] = (1 - kfp->G[1] * kfp->H[1]) * kfp->P[1][1];
- return kfp->X[0];
- }
- #endif /* Kalman_2D */
- #ifdef __DEBUG_ALGO_Kalman_ATY
- #if !Kalman1D_TYPE
- ALGO_Kalman1D_S ALGO_kfp1D = {1, 0, 0, 0, 1e-9, 1e-6};
- #else
- ALGO_Kalman1D_S ALGO_kfp1D = {0, 0, 1, 1, 1, 1e-9, 1e-6};
- #endif /* 01 */
- ALGO_Kalman2D_S ALGO_kfp2D =
- {
- {0, 0},
- {0, 0},
- {{1, 0.1}, {0, 1}},
- {1, 0},
- {{1, 0}, {0, 1}},
- {{1e-9, 0}, {0, 1e-9}},
- 10e-6
- };
- uint16_t tempSaveOW = 0;
- float tempSaveO = 0;
- float tempSaveK = 0;
- float tempSaveK2 = 0;
- void ALGO_Kalman_Test(void)
- {
- uint16_t i = 0;
- uint8_t testNum = 3;
- if(testNum == 1)
- {
- ALGO_kfp1D.Q = 1e-6;
- ALGO_kfp1D.R = 1e-4;
- for(i = 0; i < 120; i++)
- {
- tempSaveO = testSignalSigned[i];
- tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalSigned[i]);
- tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalSigned[i]);
- // printf("$");
- // printf("%f ", testSignalSigned[i]);
- // printf("%f", ALGO_KalmanFilter1D(&ALGO_kfp, testSignalSigned[i]));
- // printf(";");
- }
- }
- else if(testNum == 2)
- {
- ALGO_kfp1D.Q = 1e-6;
- ALGO_kfp1D.R = 1e-4;
- for(i = 0; i < 120; i++)
- {
- tempSaveO = testSignalUnsigned[i];
- tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUnsigned[i]);
- tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalUnsigned[i]);
- // printf("$");
- // printf("%f ", testSignalUnsigned[i]);
- // printf("%f", ALGO_KalmanFilter1D(&ALGO_kfp, testSignalUnsigned[i]));
- // printf(";");
- }
- }
- else if(testNum == 3)
- {
- ALGO_kfp1D.Q = 1e-9;
- ALGO_kfp1D.R = 1e-6;
- for(i = 0; i < 3000; i++)
- {
- tempSaveO = (float)testSignalUint16[i];
- tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalUint16[i]);
- tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalUint16[i]);
- // printf("$");
- // printf("%d ", testSignalUint16[i]);
- // printf("%d", (uint16_t)ALGO_KalmanFilter1D(&ALGO_kfp, (float)testSignalUint16[i]));
- // printf(";");
- }
- }
- else if(testNum == 4)
- {
- ALGO_kfp1D.Q = 1e-9;
- ALGO_kfp1D.R = 1e-6;
- // ALGO_kfp2D.X[0] = testSignalFloat[0];
- // ALGO_kfp2D.X[1] = testSignalFloat[1] - testSignalFloat[0];
- for(i = 0; i < 620; i++)
- {
- tempSaveO = testSignalFloat[i];
- tempSaveK = ALGO_KalmanFilter1D(&ALGO_kfp1D, testSignalFloat[i]);
- tempSaveK2 = ALGO_KalmanFilter2D(&ALGO_kfp2D, testSignalFloat[i]);
- // printf("$");
- // printf("%d ", testSignalUint16[i]);
- // printf("%d", (uint16_t)ALGO_KalmanFilter1D(&ALGO_kfp, (float)testSignalUint16[i]));
- // printf(";");
- }
- }
- }
- #endif /* __DEBUG_ALGO_Kalman_ATY */
- #endif /* __ALGO_Kalman_ATY_C */
- /******************************** End Of File *********************************/
|