| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809 |
- {
- "version": 5,
- "graph": {
- "viewport": {
- "xmin": -6.431584559250027,
- "ymin": -6.395653272652032,
- "xmax": 6.82861781326236,
- "ymax": 5.956605306838009
- }
- },
- "expressions": {
- "list": [
- {
- "type": "image",
- "id": "5",
- "image_url": "",
- "name": "Blossom-pic.png",
- "hidden": true,
- "height": "12",
- "width": "8.06"
- },
- {
- "type": "expression",
- "id": "6",
- "color": "#000000",
- "latex": "y=-4x\\left\\{-0.685<x<-0.395\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "7",
- "color": "#000000",
- "latex": "y=ax^2+bx+c\\left\\{-1.9<x<-0.7\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "30",
- "color": "#388c46",
- "latex": "c=2.7",
- "hidden": true,
- "sliderMin": -10,
- "sliderMax": 10,
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "11",
- "color": "#2d70b3",
- "latex": "a=-0.5",
- "hidden": true,
- "sliderMin": -10,
- "sliderMax": 10,
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "10",
- "color": "#c74440",
- "latex": "b=-0.4",
- "hidden": true,
- "sliderMin": -10,
- "sliderMax": 10,
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "16",
- "color": "#000000",
- "latex": "y=-0.44x^2-0.5x+3\\left\\{0.71<x<1.6\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "18",
- "color": "#000000",
- "latex": "\\frac{\\left(x-h\\right)^2}{0.13}+\\frac{\\left(y-k\\right)^2}{0.1}=80",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "22",
- "color": "#c74440",
- "latex": "k=0.2",
- "hidden": true,
- "sliderMin": -10,
- "sliderMax": 10,
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "20",
- "color": "#6042a6",
- "latex": "h=-0.7",
- "hidden": true,
- "sliderMin": -10,
- "sliderMax": 10,
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "23",
- "color": "#000000",
- "latex": "y=-3.45\\left\\{2.9<x<3.48\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "27",
- "color": "#000000",
- "latex": "y=0.63x^2-3x+0.6\\left\\{1.6<x<3.4\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "28",
- "color": "#000000",
- "latex": "y=0.2\\left(x-1.3\\right)^2-2.55\\left\\{0.5<x<2.4\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "31",
- "color": "#000000",
- "latex": "y=0.9\\left(x-0.63\\right)^2-6\\left\\{-1<x<0.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "32",
- "color": "#000000",
- "latex": "\\frac{\\left(x+2.35\\right)^2}{0.26}+\\frac{\\left(y-1.2\\right)^2}{0.37}=0.5",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "34",
- "color": "#000000",
- "latex": "y=\\left(x+1.5\\right)^2-1.04\\left\\{-2<x<-0.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "36",
- "color": "#000000",
- "latex": "y=0.4\\left(x+2.4\\right)^2-3.1\\left\\{-2.8<x<-1.265\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "37",
- "color": "#000000",
- "latex": "y=-1\\left(x-0.3\\right)^2+5\\left\\{-1.113<x<-0.956\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "40",
- "color": "#000000",
- "latex": "y=0.9\\left(x-1\\right)^2-4.25\\left\\{0.3<x<1.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "41",
- "color": "#000000",
- "latex": "y=0.6\\left(x-1.6\\right)^2-3.7\\left\\{0.2<x<0.85\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "43",
- "color": "#000000",
- "latex": "y=-0.0168\\left(x-2\\right)^2+1.94\\left\\{-3.6<x<-1.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "45",
- "color": "#000000",
- "latex": "y=-0.08\\left(x+1\\right)^2+1.6\\left\\{-0.4<x<1.6\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "46",
- "color": "#000000",
- "latex": "y=-0.08\\left(x+1\\right)^2+1.66\\left\\{2<x<2.5\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "47",
- "color": "#000000",
- "latex": "y=-0.55\\left(x-0.35\\right)^2+2.5\\left\\{0.71<x<2.05\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "48",
- "color": "#000000",
- "latex": "y=-0.2\\left(x+0.46\\right)^2+3.47\\left\\{-0.95<x<0.283\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "50",
- "color": "#000000",
- "latex": "y=-0.25\\left(x-1\\right)^2-3.05\\left\\{-0.87<x<0.61\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "51",
- "color": "#000000",
- "latex": "y=-0.1\\left(x-1\\right)^2-2.72\\left\\{-1.05<x<0.35\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "52",
- "color": "#000000",
- "latex": "y=-0.5\\left(x+0.65\\right)^2-4\\left\\{-0.05<x<0.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "53",
- "color": "#000000",
- "latex": "y=0.6\\left(x+0.4\\right)^2-5.95\\left\\{0.14<x<0.8\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "54",
- "color": "#000000",
- "latex": "y=0.5\\left(x-1.54\\right)^2+2.2\\left\\{3.18<x<3.813\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "55",
- "color": "#000000",
- "latex": "y=0.75\\left(x+1.07\\right)^2+3\\left\\{-0.284<x<0.92\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "56",
- "color": "#000000",
- "latex": "y=-0.2\\left(x-3.3\\right)^2+5.4\\left\\{0.6<x<1.7\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "57",
- "color": "#000000",
- "latex": "y=-0.2\\left(x-0.9\\right)^2+5.94\\left\\{-1.599<x<0.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "58",
- "color": "#000000",
- "latex": "\\frac{\\left(x-1.66\\right)^2}{0.13}+\\frac{\\left(y-0.57\\right)^2}{0.1}=2",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "60",
- "color": "#000000",
- "latex": "\\frac{\\left(x-1.1\\right)^2}{0.13}+\\frac{\\left(y-0.3\\right)^2}{0.13}=29\\left\\{-9<x<-0.4\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "61",
- "color": "#000000",
- "latex": "\\frac{\\left(x-1.2\\right)^2}{0.13}+\\frac{\\left(y-0.3\\right)^2}{0.13}=22\\left\\{-0.8<x<0\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "62",
- "color": "#000000",
- "latex": "\\frac{\\left(x-1.3\\right)^2}{0.13}+\\frac{\\left(y-0.3\\right)^2}{0.13}=12.9\\left\\{-1<x<0.6\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "63",
- "color": "#000000",
- "latex": "y=0.35\\left(x-1\\right)^2-1.64\\left\\{-0.2<x<2.08\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "65",
- "color": "#000000",
- "latex": "y=0.9\\left(x+3.05\\right)^2-1\\left\\{-3.8<x<-2\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "66",
- "color": "#000000",
- "latex": "y=-4\\left(x+2.4\\right)^2+2.1\\left\\{-2.07<x<-1.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "67",
- "color": "#000000",
- "latex": "y=14\\left(x+2.13\\right)^2-0.2\\left\\{-2.1<x<-1.88\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "68",
- "color": "#000000",
- "latex": "y=-20\\left(x+2.023\\right)^2+1.4\\left\\{-1.9<x<-1.87\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "69",
- "color": "#000000",
- "latex": "y=37\\left(x+1.95\\right)^2+0.5\\left\\{-1.88<x<-1.87\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "70",
- "color": "#000000",
- "latex": "y=-90\\left(x+1.86\\right)\\left\\{-1.8705<x<-1.8683\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "71",
- "color": "#000000",
- "latex": "y=-0.6\\left(x-1.93\\right)^2+5\\left\\{0.28<x<0.6\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "72",
- "color": "#000000",
- "latex": "y=-1.1\\left(x+1.06\\right)^2+5\\left\\{-2.1<x<-1.5\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "73",
- "color": "#000000",
- "latex": "y=2\\left(x+0.9\\right)^2\\left\\{-2.19<x<-2.08\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "74",
- "color": "#000000",
- "latex": "y=-2\\left(x+0.655\\right)^2+8\\left\\{-2.184<x<-2.1\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "75",
- "color": "#000000",
- "latex": "y=\\ 9\\left(x+0.79\\right)^2-4\\left\\{-1.18<x<-0.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "76",
- "color": "#000000",
- "latex": "y=1.4\\left(x+1.3\\right)^2-1.95\\left\\{-1.9<x<-0.8\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "77",
- "color": "#000000",
- "latex": "y=6\\left(x+1.6\\right)^2-2\\left\\{-2.05<x<-1.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "78",
- "color": "#000000",
- "latex": "y=-6\\left(x+1.05\\right)^2-0.6\\left\\{-0.9<x<-0.74\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "79",
- "color": "#000000",
- "latex": "y=7\\left(x+1\\right)^2-1.9\\left\\{-0.79<x<-0.72\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "80",
- "color": "#000000",
- "latex": "y=-7\\left(x+1.15\\right)^2\\left\\{-0.75<x<-0.72\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "81",
- "color": "#000000",
- "latex": "y=9\\left(x+1\\right)^2-2\\left\\{-0.75<x<-0.72\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "82",
- "color": "#000000",
- "latex": "y=0.3\\left(x-1.4\\right)^2-5.45\\left\\{1.1<x<3\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "83",
- "color": "#000000",
- "latex": "x=-0.2\\left(y+3.1\\right)^2+3.5\\left\\{-4.69<y<-2.35\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "84",
- "color": "#000000",
- "latex": "y=-0.8\\left(x-2.1\\right)^2+6\\left\\{0.14<x<0.29\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "85",
- "color": "#000000",
- "latex": "y=0.4\\left(x-1.3\\right)^2-1\\left\\{0.6<x<2.2\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "86",
- "color": "#000000",
- "latex": "y=2\\left(x-1.95\\right)^2-0.8\\left\\{2.09<x<2.49\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "87",
- "color": "#000000",
- "latex": "y=-0.1\\left(x-2\\right)^2+1.71\\left\\{1.26<x<1.56\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "88",
- "color": "#000000",
- "latex": "y=0.6\\left(x+3\\right)^2-0.8\\left\\{-3.8<x<-2.3\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "89",
- "color": "#000000",
- "latex": "y=1.1\\left(x+2.7\\right)^2-0.388\\left\\{-3<x<-2\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "91",
- "color": "#000000",
- "latex": "y=-0.1\\left(x+1\\right)^2-1.31\\left\\{-1<x<-0.75\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "92",
- "color": "#000000",
- "latex": "y=-6\\left(x+1\\right)^2-1\\left\\{-1.39<x<-1.3\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "93",
- "color": "#000000",
- "latex": "y=-3\\left(x+1\\right)^2-1.32\\left\\{-1.3<x<-1\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "95",
- "color": "#000000",
- "latex": "x=0.4\\left(y-0.6\\right)^2-3.45\\left\\{-0<y<2.45\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "96",
- "color": "#000000",
- "latex": "y=0.4\\left(x+2\\right)^2-0.7\\left\\{-3.3<x<-3.05\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "97",
- "color": "#000000",
- "latex": "y=0.3\\left(x-1\\right)^2-1.38\\left\\{1.2<x<2.3\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "98",
- "color": "#000000",
- "latex": "y=0.5\\left(x-1\\right)^2-1.38\\left\\{0<x<1.2\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "99",
- "color": "#000000",
- "latex": "y=0.4\\left(x-1\\right)^2-1.7\\left\\{-0.5<x<-0.093\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "100",
- "color": "#000000",
- "latex": "x=-0.7\\left(y+5.6\\right)^2+1.01\\left\\{0.97<x\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "101",
- "color": "#000000",
- "latex": "y=4\\left(x-0.77\\right)^2-6\\left\\{0.89<x<0.97\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "102",
- "color": "#000000",
- "latex": "y=-3\\left(x-0.579\\right)^2-4.9\\left\\{0.89<x<0.97\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "103",
- "color": "#000000",
- "latex": "y=-0.25\\left(x-2\\right)^2-3.1\\left\\{-0.55<x<0.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "104",
- "color": "#000000",
- "latex": "y=-0.6\\left(x-1.8\\right)^2-2.9\\left\\{0.8<x<1.4\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "105",
- "color": "#000000",
- "latex": "y=-1\\left(x-1.6\\right)^2-2.96\\left\\{1.3<x<1.5\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "106",
- "color": "#000000",
- "latex": "y=-1\\left(x-1\\right)^2-3.2\\left\\{1.1<x<1.75\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "108",
- "color": "#000000",
- "latex": "y=-2\\left(x-1.55\\right)^2-2.966\\left\\{1.5<x<1.856\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "109",
- "color": "#000000",
- "latex": "y=-5\\left(x-1.68\\right)^2-3\\left\\{1.85<x<1.92\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "110",
- "color": "#000000",
- "latex": "y=80\\left(x-1.82\\right)^2-4\\left\\{1.897<x<1.915\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "111",
- "color": "#000000",
- "latex": "y=0.6\\left(x+2.5\\right)^2-3.1\\left\\{-3.38<x<-2.5\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "112",
- "color": "#000000",
- "latex": "y=0.07\\left(x+2.5\\right)^2-2.25\\left\\{-3.2<x<-2.3\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "113",
- "color": "#000000",
- "latex": "y=-0.1\\left(x+2\\right)^2-2.075\\left\\{-3.34<x<-3.18\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "114",
- "color": "#000000",
- "latex": "y=-2\\left(x+3.06\\right)^2-2.1\\left\\{-3.43<x<-3.34\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "115",
- "color": "#000000",
- "latex": "y=-4\\left(x+3.22\\right)^2-2.2\\left\\{-3.46<x<-3.41\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "116",
- "color": "#000000",
- "latex": "y=6\\left(x+3.21\\right)^2-2.8\\left\\{-3.455<x<-3.37\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "117",
- "color": "#000000",
- "latex": "y=0.74\\left(x-2\\right)^2-2.42\\left\\{2.3<x<2.9\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "118",
- "color": "#000000",
- "latex": "y=0.11\\left(x-0.1\\right)^2-2\\left\\{1.652<x<2.5\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "119",
- "color": "#000000",
- "latex": "y=-0.5\\left(x-3\\right)^2-1.24\\left\\{2.4<x<2.75\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "120",
- "color": "#000000",
- "latex": "y=-0.8\\left(x-2.9\\right)^2-1.25\\left\\{2.6<x<2.85\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "121",
- "color": "#000000",
- "latex": "y=4\\left(x-2.689\\right)^2-2\\left\\{2.9<x<3.06\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "122",
- "color": "#000000",
- "latex": "y=-2\\left(x-2.8\\right)^2-1.25\\left\\{2.83<x<3.02\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "123",
- "color": "#000000",
- "latex": "y=-10\\left(x-2.9\\right)^2-1.2\\left\\{3.02<x<3.0589\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "124",
- "color": "#000000",
- "latex": "y=-0.098\\left(x-4\\right)^2+5.4\\left\\{1.667<x<4\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "125",
- "color": "#000000",
- "latex": "y=2\\left(x-3.188\\right)^2+4\\left\\{3.7<x<4.023\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "126",
- "color": "#000000",
- "latex": "y=0.37\\left(x-1.13\\right)^2+2\\left\\{1.678<x<3.256\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "127",
- "color": "#000000",
- "latex": "y=0.12\\left(x-6\\right)^2-6.18\\left\\{2.3<x<2.744\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "128",
- "color": "#000000",
- "latex": "y=2.3\\left(x-2\\right)^2-6\\left\\{1.34<x<1.509\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "129",
- "color": "#000000",
- "latex": "y=0.6\\left(x+0.3\\right)^2-5.98\\left\\{0.36<x<0.59\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "130",
- "color": "#000000",
- "latex": "y=0.6\\left(x-0.8\\right)^2-5.845\\left\\{0.36<x<0.499\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "131",
- "color": "#000000",
- "latex": "y=0.1\\left(x-0.8\\right)^2-5.799\\left\\{0.4962<x<0.5678\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "132",
- "color": "#000000",
- "latex": "y=20\\left(x-0.57\\right)^2-5.793\\left\\{0.57<x<0.63\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "133",
- "color": "#000000",
- "latex": "y=100\\left(x-0.6\\right)^2-5.8\\left\\{0.626<x<0.638\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "134",
- "color": "#000000",
- "latex": "y=-8\\left(x-0.4\\right)^2-5.2\\left\\{0.594<x<0.6382\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "135",
- "color": "#000000",
- "latex": "y=-7\\left(x-01.08\\right)^2\\left\\{1.77<x<1.781\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "136",
- "color": "#000000",
- "latex": "y=-0.9\\left(x-2\\right)^2-3.26\\left\\{1.61<x<1.73\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "137",
- "color": "#000000",
- "latex": "y=-2\\left(x-1.7\\right)^2-3.323\\left\\{1.733<x<1.77\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "138",
- "color": "#000000",
- "latex": "y=-1.7\\left(x-1.13\\right)^2-3\\left\\{1.612<x<1.704\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "139",
- "color": "#000000",
- "latex": "y=1.7\\left(x-1.33\\right)^2-3.8\\left\\{1.706<x<1.77\\right\\}",
- "style": "SOLID"
- },
- {
- "type": "expression",
- "id": "140",
- "color": "#000000",
- "latex": "y=10\\left(x-1.656\\right)^2-3.6\\left\\{1.768<x<1.782\\right\\}",
- "style": "SOLID"
- }
- ]
- }
- }
|